Using Binary Decision Diagrams to Enumerate Inductive Logic Programming Solutions

Hikaru Shindo*, Masaaki Nishino**, Akihiro Yamamoto*
September 4, 2018

* Graduate School of Informatics, Kyoto University
** NTT Communication Science Laboratories

Abstract

- We propose an efficient algorithm for enumerating solutions of Inductive Logic Programming problem with Binary Decision Diagrams.
- Basic formalization of ILP allows many potential solutions, and we might miss important solutions.
\Rightarrow Enumeration is fundamental technique to avoid such missing.
- Key idea: We use Binary Decision Diagram for enumeration.
- Binary Decision Diagram (BDD) is a directed acyclic graph representing compactly a Boolean function.
- We show how to build recursively a Binary Decision Diagram that represents the set of solutions.

Table of contents

1. Introduction
2. Binary Decision Diagram and Enumeration of Solutions
3. Applications
4. Experiments
5. Conclusion and Future work

Introduction

Motivation

- ILP system generate solutions for given positive examples and negative examples. On the view point of logic, a lot of candidates of solutions might be generated.
- Every ILP system choose some appropriate solutions based on some criteria or its search method.

Example

$$
\begin{aligned}
& \mathcal{E}^{+}=\{p(a)\}, \\
& \mathcal{E}^{-}=\{p(b)\} \\
& \mathcal{B}=\{ \}
\end{aligned}
$$

We call the solution of ILP problem as hypothesis.

Fundamental idea: Enumeration of hypotheses

Enumeration of hypotheses is keeping all hypotheses.

Merits of the enumeration:

1. Preventing hypothesis omission

The importance of a hypothesis depends on the case, so algorithms that give only one hypothesis may not return the best hypothesis.
2. Hypothesis selection

Users can select a hypothesis or compare some hypotheses using an evaluation function.
3. Online-learning

We can efficiently perform online leaning, i.e., updating the current set of hypothesis when new examples are added.

Approach

- We assume that a finite set of clauses that can be an element of hypotheses is given explicitly.
- Even in that finite space, enumerating all hypotheses naively is an implausible task because there are a serious amount of candidate hypotheses.
- To treat such large scale sets of hypotheses, we use Binary Decision Diagram (BDD)s that give compressed representation of hypotheses for enumeration.
- In this work, we developed an efficient recursive algorithm for constructing a BDD.

Contribution

- An efficient algorithm for enumerating hypotheses using BDDs.
- The class of ILP problems that we can apply our algorithm.
- An efficient algorithm to get the best hypothesis with an evaluation function.
- We empirically show that our method can be applied to real data.

Binary Decision Diagram and Enumeration of Solutions

Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a directed acyclic graph that represents a Boolean function.

BDD that represents $\boldsymbol{F}\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0} \wedge x_{1}\right) \vee x_{2}$

Binary operations between BDDs can be executed efficiently.
For example, given two BDDs representing logical functions \boldsymbol{F} and \boldsymbol{G}, then the BDD representing $\boldsymbol{H}=\boldsymbol{F} \wedge \boldsymbol{G}$ can be computed in time linear to \boldsymbol{F} and \boldsymbol{G} sizes.

Inductive Logic Programming

In Inductive Logic Programming (ILP), all data, background knowledge, and hypotheses are represented by first-order logic.

ILP Problem

Input Finite sets $\mathcal{E}^{+}, \mathcal{E}^{-}$, and \mathcal{B} of ground atoms
Output A set of definite clauses $\boldsymbol{\Sigma}$ such that

$$
\begin{array}{ll}
\text { 1. for all } A \in \mathcal{E}^{+} & \Sigma \cup \mathcal{B} \models A \\
\text { 2. for all } A \in \mathcal{E}^{-} & \Sigma \cup \mathcal{B} \nLeftarrow A
\end{array}
$$

Example

$$
\begin{gathered}
\mathcal{E}^{+}=\{p(a)\}, \mathcal{E}^{-}=\{p(b)\}, \mathcal{B}=\{ \} \\
\Sigma=\{p(a)\},\{p(x) \leftarrow q(x), q(a)\}, \ldots
\end{gathered}
$$

Using BDDs for enumerating ILP solutions

- To enumerate ILP hypotheses with BDDs, we introduce Boolean variables, because BDD is a representation of a Boolean function.
- Boolean variables make the hypothesis enumeration problem equivalent to the problem of identifying a Boolean function.
- Hypothesis space \mathcal{H} is a finite set of clauses that can be an element of the hypothesis. We assume that \mathcal{H} is given explicitly.

For each clause $\boldsymbol{C} \in \mathcal{H}$, we introduce a propositional variable $\boldsymbol{v}_{\boldsymbol{C} \in \boldsymbol{\Sigma}}$ that becomes true if and only if clause $\boldsymbol{C} \in \boldsymbol{\Sigma}$.
For readability, we represent $[\boldsymbol{C} \in \boldsymbol{\Sigma}]$ instead of $\boldsymbol{v}_{\boldsymbol{C} \in \boldsymbol{\Sigma}}$,

$$
\begin{equation*}
C \in \Sigma \Leftrightarrow[C \in \Sigma]=T \tag{1}
\end{equation*}
$$

Building a BDD that represents hypotheses

We define $\boldsymbol{F}_{\boldsymbol{A}}$ as a BDD that represents the Boolean function that becomes true if and only if $\boldsymbol{\Sigma} \cup \mathcal{B} \models \boldsymbol{A}$.

Then, a BDD that represents the set of hypotheses is

$$
\bigwedge_{A \in \mathcal{E}^{+}} F_{A} \wedge \bigwedge_{A \in \mathcal{E}^{-}} \neg F_{A}
$$

Example

Given:

$$
\mathcal{E}^{+}=\{p(a)\}, \mathcal{E}^{-}=\{p(b)\}, \mathcal{B}=\{ \}
$$

The BDD to be built:

$$
F_{p(a)} \wedge \neg F_{p(b)}=
$$

Solving ILP problem on the BDD

$\boldsymbol{I}_{\boldsymbol{C}}$: the BDD that represents the Boolean variable $[\boldsymbol{C} \in \boldsymbol{\Sigma}]$
$\boldsymbol{B} \boldsymbol{K}_{\boldsymbol{A}}$: the BDD that represents a constant that becomes true if and only if $\boldsymbol{A} \in \mathcal{B}$.

Then $\boldsymbol{F}_{\boldsymbol{A}}$ for $\boldsymbol{A} \in \mathcal{E}^{+} \cup \mathcal{E}^{-}$is recursively defined as

$$
\begin{equation*}
F_{A}=B K_{A} \vee \bigvee_{\substack{C \in \mathcal{H} \\ C \theta=A \leftarrow B B_{1} \wedge \ldots \wedge B_{n}}}\left(I_{C} \wedge \bigwedge F_{B_{i}}\right) . \tag{2}
\end{equation*}
$$

The right side of equation (2) represents the fact that $\boldsymbol{\Sigma} \cup \mathcal{B} \models \boldsymbol{A}$ if

1. $\boldsymbol{A} \in \mathcal{B}$, or
2. \boldsymbol{A} is deduced by a substitution.

Solving ILP problem on the BDD

Example

Introduced variables:

$$
F_{p(a)}=I_{p(a)} \quad \vee\left(I_{p(x) \leftarrow q(x)} \wedge \quad F_{q(a)}\right)
$$

$$
F_{p(b)}=I_{p(b)} \vee\left(I_{p(x) \leftarrow q(x)} \wedge F_{q(b)}\right)
$$

$$
\begin{aligned}
& \text { (0) }[p(a) \in \Sigma], \quad \text { (1) }[p(b) \in \Sigma] \text {, } \\
& \text { (2) }[q(a) \in \Sigma], \quad \text { (3) }[q(b) \in \Sigma], \quad \text { (4) }[p(x) \leftarrow q(x) \in \Sigma]
\end{aligned}
$$

Solving ILP problem on the BDD

Problem

$$
\begin{aligned}
& \mathcal{E}^{+}=\{p(a)\}, \mathcal{E}^{-}=\{p(b)\}, \mathcal{B}=\{ \}, \\
& \mathcal{H}=\left\{\begin{array}{ll}
p(a), & p(b), \\
q(a), & q(b),
\end{array} \quad p(x) \leftarrow q(x)\right\} .
\end{aligned}
$$

Introduced variables:

$$
\begin{aligned}
& \text { (0) }[p(a) \in \Sigma] \text { (1) }[p(b) \in \Sigma] \\
& \text { (2) }[q(a) \in \Sigma] \text { (3) }[q(b) \in \Sigma] \\
& \text { (4) }[p(x) \leftarrow q(x) \in \Sigma]
\end{aligned}
$$

Enumerated hypotheses:

$$
\begin{aligned}
& \Sigma=\{p(a)\} \\
& \Sigma=\{q(a), p(x) \leftarrow q(x)\}
\end{aligned}
$$

$$
\boldsymbol{F}_{\boldsymbol{p}(a)} \wedge \neg \boldsymbol{F}_{\boldsymbol{p}(b)}
$$

Applications

Search for the best hypothesis

Introduced variables:

$$
\begin{aligned}
& \text { () }[p(a) \in \Sigma] \\
& \text { (1) }[p(b) \in \Sigma] \\
& \text { (2) }[q(a) \in \Sigma] \\
& \text { (3) }[q(b) \in \Sigma] \\
& \text { (4) }[p(x) \leftarrow q(x) \in \Sigma]
\end{aligned}
$$

Example

The hypothesis with minimum number of atoms:

$$
\Sigma_{\text {best }}=\{p(a)\}
$$

This corresponds to the minimum-weight path colored red.

$F_{p(a)} \wedge \neg \boldsymbol{F}_{p(b)}$

Experiments

Classification of natural numbers

When \boldsymbol{n} is even,

$$
\begin{aligned}
\mathcal{E}^{+} & =\left\{e(0), e\left(s^{2}(0)\right), \ldots, e\left(s^{n}(0)\right)\right\} \\
\mathcal{E}^{-} & =\left\{e(s(0)), e\left(s^{3}(0)\right), \ldots, e\left(s^{n+1}(0)\right)\right\}
\end{aligned}
$$

When \boldsymbol{n} is odd,

$$
\begin{aligned}
\mathcal{E}^{+} & =\left\{e(0), e\left(s^{2}(0)\right), \ldots, e\left(s^{n+1}(0)\right)\right\} \\
\mathcal{E}^{-} & =\left\{e(s(0)), e\left(s^{3}(0)\right), \ldots, e\left(s^{n}(0)\right)\right\}
\end{aligned}
$$

Example

In the case of $\boldsymbol{n}=\mathbf{1}, \mathcal{E}^{+}, \mathcal{E}^{-}, \mathcal{B}$, and \mathcal{H} are, respectively,

$$
\begin{aligned}
\mathcal{E}^{+} & =\left\{e(0), e\left(s^{2}(0)\right)\right\}, \mathcal{E}^{-}=\{e(s(0))\}, \mathcal{B}=\emptyset, \text { and } \\
\mathcal{H} & =\left\{\begin{array}{cc}
e(0), & e(x), \\
e(s(0)), & e\left(s^{2}(x)\right), \\
e\left(s^{2}(0)\right), & e\left(s^{2}(x)\right) \leftarrow e(x), \\
e(s(x)) \leftarrow e(x), & e\left(s^{2}(x)\right) \leftarrow e(s(x)) \wedge e(x)
\end{array}\right\} .
\end{aligned}
$$

Results

n	variables	nodes	hypotheses	BDD construction time	best hypothesis search time
1	10	8	28	7.56 msec	0.62 msec
2	19	14	192	9.63 msec	0.68 msec
3	36	27	1.25×10^{7}	$1.90 \times 10 \mathrm{msec}$	1.02 msec
4	69	42	1.31×10^{13}	$3.08 \times 10 \mathrm{msec}$	1.16 msec
5	134	69	4.82×10^{32}	$7.00 \times 10 \mathrm{msec}$	1.48 msec
6	263	101	9.77×10^{63}	$3.50 \times 10^{2} \mathrm{msec}$	2.21 msec
7	520	156	2.26×10^{141}	$1.68 \times 10^{3} \mathrm{msec}$	1.68 msec
8	1033	219	$1.80 \times 10^{308}+$	$1.20 \times 10^{4} \mathrm{msec}$	2.66 msec

Table 1: The results of the natural number problem

Classification of real data

(1) Soybean(small) ${ }^{1}$ and (2) Shuttle Landing Control ${ }^{2}$ from

UCI Machine Learning Repository ${ }^{3}$.
Target concept: D1, no_auto respectively.

Problem	variables	nodes	hypotheses	BDD construction time
Soybean	2243	788498	$1.80 \times 10^{308}+$	13495 msec
Shuttle	117	2345	6.76×10^{10}	30 msec

Table 2: The results of real data problem

One of the best hypotheses found in problem of Soybean(small) is,

$$
\Sigma_{\text {best }}=\{\operatorname{class}(x, D 1) \leftarrow \text { stem_canker }(x, \text { above_soil })\} .
$$

[^0]Conclusion and Future work

Conclusion and Future work

Conclusion

- We proposed a BDD-based method to enumerate hypotheses of an ILP.
- We showed that users can get the best hypothesis following an evaluation function from the constructed BDD.

Future Work

- Enumerating hypotheses that have some errors
- Combination with other ILP approaches
- Enumeration with other data structures

Requirements

Hypothesis space is a finite set of clauses that can be an element of the hypothesis.

We assume that the hypothesis space is given explicitly, and it satisfies the following two requirements.

Requirement 1
The hypothesis space does not contain any mutually recursive clauses.

Requirement 2
The hypothesis space is variable-bounded.

Mutually recursive clauses

Mutually recursive clauses

Let \mathcal{H} is a hypothesis space that is finite set of definite clauses. If a series of definite clauses $\left\{C_{i} \in \mathcal{H}\right\}_{i=0, \ldots, n}$ and substitutions
$\theta_{1}, \ldots, \theta_{n}$ exist, and they are expressed as

$$
\begin{aligned}
C_{1} \theta_{1} & =A \leftarrow \ldots \wedge X_{1} \wedge \ldots \\
C_{2} \theta_{2} & =X_{1} \leftarrow \ldots \wedge X_{2} \wedge \ldots, \\
& \vdots \\
C_{n} \theta_{n} & =X_{n-1} \leftarrow \ldots \wedge A \wedge \ldots,
\end{aligned}
$$

then $C_{1}, C_{2}, \ldots, C_{n}$ are mutually recursive clauses.
Having no mutually recursive clauses ensures that we can trace all literals present in the hypothesis space in a finite number of steps.

Variable-bounded

Variable-bounded
Definite clause $\boldsymbol{A} \leftarrow \boldsymbol{B}_{1} \wedge \ldots \wedge \boldsymbol{B}_{\boldsymbol{n}}$ is variable-bounded if $v(A) \supseteq v\left(B_{i}\right)(i=1, \ldots, n)$, where $\boldsymbol{v}(\boldsymbol{C})$ is the set of all variables in \boldsymbol{C}. The hypothesis space \mathcal{H} is variable-bounded if all $C \in \mathcal{H}$ are variable-bounded.

Being variable-bounded ensures that for a clause
$\boldsymbol{C \theta}=\boldsymbol{A} \leftarrow \boldsymbol{B}_{1} \wedge \ldots \wedge B_{n} \in \mathcal{H}$,
if \boldsymbol{A} has no variables, then $\boldsymbol{B}_{\boldsymbol{i}}(\boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n})$ also has no variables.

[^0]: ${ }^{1}$ https://archive.ics.uci.edu/ml/datasets/soybean+(small)
 ${ }^{2}$ https://archive.ics.uci.edu/ml/datasets/Shuttle+Landing+Control
 ${ }^{3}$ http://archive.ics.uci.edu/ml/index.php

