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Abstract

- We propose an efficient algorithm for enumerating solutions of
Inductive Logic Programming problem with Binary Decision
Diagrams.

- Basic formalization of ILP allows many potential solutions, and we
might miss important solutions.
= Enumeration is fundamental technique to avoid such missing.

- Key idea: We use Binary Decision Diagram for enumeration.
- Binary Decision Diagram (BDD) is a directed acyclic graph
representing compactly a Boolean function.

- We show how to build recursively a
Binary Decision Diagram that
represents the set of solutions.
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Introduction



- ILP system generate solutions for given positive examples and
negative examples. On the view point of logic, a lot of
candidates of solutions might be generated.

- Every ILP system choose some appropriate solutions based on
some criteria or its search method.

Example

2 ={p(a)},

S = {p(a)},
i = Y ={p(x) + q(x),q(a)},

£ ={r®)},
B={}

We call the solution of ILP problem as hypothesis.



Fundamental idea: Enumeration of hypotheses

Enumeration of hypotheses is keeping all hypotheses.

Merits of the enumeration:

1. Preventing hypothesis omission
The importance of a hypothesis depends on the case, so
algorithms that give only one hypothesis may not return the
best hypothesis.

2. Hypothesis selection
Users can select a hypothesis or compare some hypotheses
using an evaluation function.

3. Online-learning
We can efficiently perform online leaning, i.e., updating the
current set of hypothesis when new examples are added.



- We assume that a finite set of clauses that can be an element of
hypotheses is given explicitly.
- Even in that finite space, enumerating all hypotheses naively is an
implausible task because there are a serious amount of candidate
hypotheses.

- To treat such large scale sets of hypotheses, we use Binary
Decision Diagram (BDD)s that give compressed representation
of hypotheses for enumeration.

- In this work, we developed an efficient recursive algorithm for
constructing a BDD.



Contribution

- An efficient algorithm for enumerating hypotheses using BDDs.
- The class of ILP problems that we can apply our algorithm.

- An efficient algorithm to get the best hypothesis with an
evaluation function.

- We empirically show that our method can be applied to real
data.



Binary Decision Diagram and
Enumeration of Solutions



Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a directed acyclic graph that
represents a Boolean function.

oG

BDD that represents F'(xo, 1, x2) = (xo A x1) V 22

Binary operations between BDDs can be executed efficiently.

For example, given two BDDs representing logical functions F and
G, then the BDD representing H = F' A G can be computed in time
linear to F' and G sizes.



Inductive Logic Programming

In Inductive Logic Programming (ILP), all data, background
knowledge, and hypotheses are represented by first-order logic.

ILP Problem
Input Finite sets £F, £, and B of ground atoms
Output A set of definite clauses X such that
1. forall Ac €T TUBE A
2. forallAec &~ XUBKEA
Example

et ={p(a)},&~ = {p(0)},B={}

Y ={p(a)}, {p(z) < q(x),q(a)},...



Using BDDs for enumerating ILP solutions

- To enumerate ILP hypotheses with BDDs, we introduce Boolean
variables, because BDD is a representation of a Boolean
function.

- Boolean variables make the hypothesis enumeration problem
equivalent to the problem of identifying a Boolean function.

- Hypothesis space H is a finite set of clauses that can be an
element of the hypothesis. We assume that H is given explicitly.

For each clause C' € H, we introduce a propositional variable voes
that becomes true if and only if clause C € X.
For readability, we represent [C € X] instead of voes,

CeX&[Cex]=T. (1)



Building a BDD that represents hypotheses

We define F4 as a BDD that represents the Boolean function that
becomes true if and only if X U B = A.

Then, a BDD that represents the set of hypotheses is

/\ Fa N /\ —Fy.

AegEt A€E—

Example
Given:

Er ={p(a)}, €~ = {p(0)}, B = {},

The BDD to be built:

Fpa) N ~Fpp) = © A “



Solving ILP problem on the BDD

Ic: the BDD that represents the Boolean variable [C € X]
BK 4: the BDD that represents a constant that becomes true if and
only if A € B.

Then F4 for A € €1 U £~ is recursively defined as

Fa=BKaV \/ (IC AN FBi) ) @)
CcCeH
30
CO=A<+BiAN...AB,,

The right side of equation (2) represents the fact that T U B = A if

1. AeBor
2. A is deduced by a substitution.
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Solving ILP problem on the BDD

Example
Introduced variables

@[p(a) € 2], Olp(d) € X,
@lq(a) € ], Olgq(b) € ], BO[p(z) + q(=x) € 3]

Ip@y V Tp@)ea@ AN Fga)

A A,
g8, (@B 5

Fowy = Ipw)y V Tp@)ea@ N Faw))

A Y,
BE, @B 5 B

Fpa) =



Solving ILP problem on the BDD

Problem

et ={p(a)},€~ = {p(®)}, B = {},

o [ p@, ),
q(a), q(), p(=) <+ q(=) [’

Introduced variables:

@[p(a) € =] Op(d) € 3]
@lq(a) € 3] B[q(b) € X]
®O[p(x) + q(x) € 3]

Enumerated hypotheses:

¥ = {p(a)}
Y = {q(a), p(z) + q(x)}




Applications




Search for the best hypothesis

Introduced variables:

O[p(a) € 3

@[p(d) € X]

@l[q(a) € 3

Olq(b) € 3]

@[p(z) + q(z) € X]
Example
The hypothesis with minimum number of
atoms:

Ebest == {p(a) }

This corresponds to the minimum-weight

path colored red. Fpa) A ~Fpv) "



Experiments




Classification of natural numbers

When n is even,
£+ = {E(O)’ 3(52(0))7 ) e(sn(o))}’
£~ = {e(s(0)), e(s°(0)), . .., e(s™ 11 (0))}.
When n is odd,
Et = {e(0), 6(82(0))a ) e(5n+1(0))}7
£~ = {e(s(0)),e(s%(0)), ..., e(s™(0))}.

Example
In the case of n = 1, £, £, B, and H are, respectively,

ET = {e(0),e(s%(0))}, €~ = {e(s(0))},B =0, and

e(0), e(x),
e(s(0)), e(s(x)),
H= e(s(0)), e(s*(x)),
e(s(x)) « e(z), e(s?(z)) + e(x),

e(s?(z)) « e(s(®)), e(s?(2)) « e(s(z)) A e()



BDD best hypothesis
n  variables  nodes hypotheses construction time search time
1 10 8 28 7.56msec 0.62msec
2 19 14 192 9.63msec 0.68msec
3 36 27 1.25 x 107 1.90 x 10msec 1.02msec
4 69 42 1.31 x 10*? 3.08 x 10msec 1.16msec
5 134 69 4.82 x 1032 7.00 x 10msec 1.48msec
6 263 101 9.77 x 102 3.50 x 10%2msec 2.21msec
7 520 156 2.26 x 104! 1.68 x 10°msec 1.68msec
8 1033 219 1.80 x 10984 1.20 x 10*msec 2.66msec

Table 1: The results of the natural number problem
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Classification of real data

(1) Soybean(small)" and (2) Shuttle Landing Control? from
UCI Machine Learning Repository?.
Target concept: D1, no_auto respectively.

BDD
Problem  variables nodes hypotheses construction time
Soybean 2243 788498  1.80 x 103084 13495msec
Shuttle 117 2345 6.76 x 1010 30msec

Table 2: The results of real data problem

One of the best hypotheses found in problem of Soybean(small) is,

Yhest = {class(x, D1) + stem_canker(x,above_soil)}.

Thttps:/ /archive.ics.uci.edu/ml/datasets/soybean+(small)
Zhttps:/ /archive.ics.uci.edu/ml/datasets/Shuttle+Landing+Control
3http:/ /archive.ics.uci.edu/ml/index.php



Conclusion and Future work




Conclusion and Future work

Conclusion

- We proposed a BDD-based method to enumerate hypotheses of
an ILP.

- We showed that users can get the best hypothesis following an
evaluation function from the constructed BDD.

Future Work
- Enumerating hypotheses that have some errors

- Combination with other ILP approaches
- Enumeration with other data structures



Hypothesis space is a finite set of clauses that can be an element of
the hypothesis.

We assume that the hypothesis space is given explicitly,
and it satisfies the following two requirements.

Requirement 1
The hypothesis space does not contain any mutually recursive
clauses.

Requirement 2
The hypothesis space is variable-bounded.
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Mutually recursive clauses

Mutually recursive clauses

Let H is a hypothesis space that is finite set of definite clauses. If a
series of definite clauses {C; € H}i—o,...,n and substitutions
01,...,0, exist, and they are expressed as

C191:A<—.../\X1/\...,
0202=X1(—.../\X2/\...,

Cnb, =X, 1+ ...NAA...,
then Cy,Cs, ..., C, are mutually recursive clauses.

Having no mutually recursive clauses ensures that we can trace all
literals present in the hypothesis space in a finite number of steps.
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Variable-bounded

Variable-bounded

Definite clause A < B; A ... A B,, is variable-bounded if
v(A) Dv(B;) (i=1,...,n), where v(C) is the set of all
variables in C. The hypothesis space H is variable-bounded if all
C € H are variable-bounded.

Being variable-bounded ensures that for a clause
CO=A<«+ BiA...ANB,, €H,
if A has no variables, then B; (¢ = 1,...,n) also has no variables.
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