Using Binary Decision Diagrams to Enumerate
Inductive Logic Programming Solutions

Hikaru Shindo*, Masaaki Nishino**, Akihiro Yamamoto*

September 4, 2018

* Graduate School of Informatics, Kyoto University
** NTT Communication Science Laboratories

Abstract

- We propose an efficient algorithm for enumerating solutions of
Inductive Logic Programming problem with Binary Decision
Diagrams.

- Basic formalization of ILP allows many potential solutions, and we
might miss important solutions.
= Enumeration is fundamental technique to avoid such missing.

- Key idea: We use Binary Decision Diagram for enumeration.
- Binary Decision Diagram (BDD) is a directed acyclic graph
representing compactly a Boolean function.

- We show how to build recursively a
Binary Decision Diagram that
represents the set of solutions.

Table of contents

1. Introduction
2. Binary Decision Diagram and Enumeration of Solutions
3. Applications
4. Experiments

5. Conclusion and Future work

Introduction

- ILP system generate solutions for given positive examples and
negative examples. On the view point of logic, a lot of
candidates of solutions might be generated.

- Every ILP system choose some appropriate solutions based on
some criteria or its search method.

Example

2 ={p(a)},

S = {p(a)},
i = Y ={p(x) + q(x),q(a)},

£ ={r®)},
B={}

We call the solution of ILP problem as hypothesis.

Fundamental idea: Enumeration of hypotheses

Enumeration of hypotheses is keeping all hypotheses.

Merits of the enumeration:

1. Preventing hypothesis omission
The importance of a hypothesis depends on the case, so
algorithms that give only one hypothesis may not return the
best hypothesis.

2. Hypothesis selection
Users can select a hypothesis or compare some hypotheses
using an evaluation function.

3. Online-learning
We can efficiently perform online leaning, i.e., updating the
current set of hypothesis when new examples are added.

- We assume that a finite set of clauses that can be an element of
hypotheses is given explicitly.
- Even in that finite space, enumerating all hypotheses naively is an
implausible task because there are a serious amount of candidate
hypotheses.

- To treat such large scale sets of hypotheses, we use Binary
Decision Diagram (BDD)s that give compressed representation
of hypotheses for enumeration.

- In this work, we developed an efficient recursive algorithm for
constructing a BDD.

Contribution

- An efficient algorithm for enumerating hypotheses using BDDs.
- The class of ILP problems that we can apply our algorithm.

- An efficient algorithm to get the best hypothesis with an
evaluation function.

- We empirically show that our method can be applied to real
data.

Binary Decision Diagram and
Enumeration of Solutions

Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a directed acyclic graph that
represents a Boolean function.

oG

BDD that represents F'(xo, 1, x2) = (xo A x1) V 22

Binary operations between BDDs can be executed efficiently.

For example, given two BDDs representing logical functions F and
G, then the BDD representing H = F' A G can be computed in time
linear to F' and G sizes.

Inductive Logic Programming

In Inductive Logic Programming (ILP), all data, background
knowledge, and hypotheses are represented by first-order logic.

ILP Problem
Input Finite sets £F, £, and B of ground atoms
Output A set of definite clauses X such that
1. forall Ac €T TUBE A
2. forallAec &~ XUBKEA
Example

et ={p(a)},&~ = {p(0)},B={}

Y ={p(a)}, {p(z) < q(x),q(a)},...

Using BDDs for enumerating ILP solutions

- To enumerate ILP hypotheses with BDDs, we introduce Boolean
variables, because BDD is a representation of a Boolean
function.

- Boolean variables make the hypothesis enumeration problem
equivalent to the problem of identifying a Boolean function.

- Hypothesis space H is a finite set of clauses that can be an
element of the hypothesis. We assume that H is given explicitly.

For each clause C' € H, we introduce a propositional variable voes
that becomes true if and only if clause C € X.
For readability, we represent [C € X] instead of voes,

CeX&[Cex]=T. (1)

Building a BDD that represents hypotheses

We define F4 as a BDD that represents the Boolean function that
becomes true if and only if X U B = A.

Then, a BDD that represents the set of hypotheses is

/\ Fa N /\ —Fy.

AegEt A€E—

Example
Given:

Er ={p(a)}, €~ = {p(0)}, B = {},

The BDD to be built:

Fpa) N ~Fpp) = © A “

Solving ILP problem on the BDD

Ic: the BDD that represents the Boolean variable [C € X]
BK 4: the BDD that represents a constant that becomes true if and
only if A € B.

Then F4 for A € €1 U £~ is recursively defined as

Fa=BKaV \/ (IC AN FBi)) @)
CcCeH
30
CO=A<+BiAN...AB,,

The right side of equation (2) represents the fact that T U B = A if

1. AeBor
2. A is deduced by a substitution.

1

Solving ILP problem on the BDD

Example
Introduced variables

@[p(a) € 2], Olp(d) € X,
@lq(a) €], Olgq(b) €], BO[p(z) + q(=x) € 3]

Ip@y V Tp@)ea@ AN Fga)

A A,
g8, (@B 5

Fowy = Ipw)y V Tp@)ea@ N Faw))

A Y,
BE, @B 5 B

Fpa) =

Solving ILP problem on the BDD

Problem

et ={p(a)},€~ = {p(®)}, B = {},

o [p@,),
q(a), q(), p(=) <+ q(=) [’

Introduced variables:

@[p(a) € =] Op(d) € 3]
@lq(a) € 3] B[q(b) € X]
®O[p(x) + q(x) € 3]

Enumerated hypotheses:

¥ = {p(a)}
Y = {q(a), p(z) + q(x)}

Applications

Search for the best hypothesis

Introduced variables:

O[p(a) € 3

@[p(d) € X]

@l[q(a) € 3

Olq(b) € 3]

@[p(z) + q(z) € X]
Example
The hypothesis with minimum number of
atoms:

Ebest == {p(a) }

This corresponds to the minimum-weight

path colored red. Fpa) A ~Fpv) "

Experiments

Classification of natural numbers

When n is even,
£+ = {E(O)’ 3(52(0))7) e(sn(o))}’
£~ = {e(s(0)), e(s°(0)), . .., e(s™ 11 (0))}.
When n is odd,
Et = {e(0), 6(82(0))a) e(5n+1(0))}7
£~ = {e(s(0)),e(s%(0)), ..., e(s™(0))}.

Example
In the case of n = 1, £, £, B, and H are, respectively,

ET = {e(0),e(s%(0))}, €~ = {e(s(0))},B =0, and

e(0), e(x),
e(s(0)), e(s(x)),
H= e(s(0)), e(s*(x)),
e(s(x)) « e(z), e(s?(z)) + e(x),

e(s?(z)) « e(s(®)), e(s?(2)) « e(s(z)) A e()

BDD best hypothesis
n variables nodes hypotheses construction time search time
1 10 8 28 7.56msec 0.62msec
2 19 14 192 9.63msec 0.68msec
3 36 27 1.25 x 107 1.90 x 10msec 1.02msec
4 69 42 1.31 x 10*? 3.08 x 10msec 1.16msec
5 134 69 4.82 x 1032 7.00 x 10msec 1.48msec
6 263 101 9.77 x 102 3.50 x 10%2msec 2.21msec
7 520 156 2.26 x 104! 1.68 x 10°msec 1.68msec
8 1033 219 1.80 x 10984 1.20 x 10*msec 2.66msec

Table 1: The results of the natural number problem

16

Classification of real data

(1) Soybean(small)" and (2) Shuttle Landing Control? from
UCI Machine Learning Repository?.
Target concept: D1, no_auto respectively.

BDD
Problem variables nodes hypotheses construction time
Soybean 2243 788498 1.80 x 103084 13495msec
Shuttle 117 2345 6.76 x 1010 30msec

Table 2: The results of real data problem

One of the best hypotheses found in problem of Soybean(small) is,

Yhest = {class(x, D1) + stem_canker(x,above_soil)}.

Thttps:/ /archive.ics.uci.edu/ml/datasets/soybean+(small)
Zhttps:/ /archive.ics.uci.edu/ml/datasets/Shuttle+Landing+Control
3http:/ /archive.ics.uci.edu/ml/index.php

Conclusion and Future work

Conclusion and Future work

Conclusion

- We proposed a BDD-based method to enumerate hypotheses of
an ILP.

- We showed that users can get the best hypothesis following an
evaluation function from the constructed BDD.

Future Work
- Enumerating hypotheses that have some errors

- Combination with other ILP approaches
- Enumeration with other data structures

Hypothesis space is a finite set of clauses that can be an element of
the hypothesis.

We assume that the hypothesis space is given explicitly,
and it satisfies the following two requirements.

Requirement 1
The hypothesis space does not contain any mutually recursive
clauses.

Requirement 2
The hypothesis space is variable-bounded.

19

Mutually recursive clauses

Mutually recursive clauses

Let H is a hypothesis space that is finite set of definite clauses. If a
series of definite clauses {C; € H}i—o,...,n and substitutions
01,...,0, exist, and they are expressed as

C191:A<—.../\X1/\...,
0202=X1(—.../\X2/\...,

Cnb, =X, 1+ ...NAA...,
then Cy,Cs, ..., C, are mutually recursive clauses.

Having no mutually recursive clauses ensures that we can trace all
literals present in the hypothesis space in a finite number of steps.

20

Variable-bounded

Variable-bounded

Definite clause A < B; A ... A B,, is variable-bounded if
v(A) Dv(B;) (i=1,...,n), where v(C) is the set of all
variables in C. The hypothesis space H is variable-bounded if all
C € H are variable-bounded.

Being variable-bounded ensures that for a clause
CO=A<«+ BiA...ANB,, €H,
if A has no variables, then B; (¢ = 1,...,n) also has no variables.

21

	Introduction
	Binary Decision Diagram and Enumeration of Solutions
	Applications
	Experiments
	Conclusion and Future work

