
Using Binary Decision Diagrams to Enumerate
Inductive Logic Programming Solutions

Hikaru Shindo*, Masaaki Nishino**, Akihiro Yamamoto*
September 4, 2018

* Graduate School of Informatics, Kyoto University
** NTT Communication Science Laboratories

Abstract

• We propose an efficient algorithm for enumerating solutions of
Inductive Logic Programming problem with Binary Decision
Diagrams.

• Basic formalization of ILP allows many potential solutions, and we
might miss important solutions.
⇒ Enumeration is fundamental technique to avoid such missing.

• Key idea: We use Binary Decision Diagram for enumeration.
• Binary Decision Diagram (BDD) is a directed acyclic graph
representing compactly a Boolean function.

• We show how to build recursively a
Binary Decision Diagram that
represents the set of solutions.

0

2

1

10 1

Table of contents

1. Introduction

2. Binary Decision Diagram and Enumeration of Solutions

3. Applications

4. Experiments

5. Conclusion and Future work

2

Introduction

Motivation

• ILP system generate solutions for given positive examples and
negative examples. On the view point of logic, a lot of
candidates of solutions might be generated.

• Every ILP system choose some appropriate solutions based on
some criteria or its search method.

Example

E+ = {p(a)},
E− = {p(b)},
B = {}

⇒
Σ = {p(a)},
Σ = {p(x)← q(x), q(a)},
...

We call the solution of ILP problem as hypothesis.

3

Fundamental idea: Enumeration of hypotheses

Enumeration of hypotheses is keeping all hypotheses.

Merits of the enumeration:

1. Preventing hypothesis omission
The importance of a hypothesis depends on the case, so
algorithms that give only one hypothesis may not return the
best hypothesis.

2. Hypothesis selection
Users can select a hypothesis or compare some hypotheses
using an evaluation function.

3. Online-learning
We can efficiently perform online leaning, i.e., updating the
current set of hypothesis when new examples are added.

4

Approach

• We assume that a finite set of clauses that can be an element of
hypotheses is given explicitly.

• Even in that finite space, enumerating all hypotheses naively is an
implausible task because there are a serious amount of candidate
hypotheses.

• To treat such large scale sets of hypotheses, we use Binary
Decision Diagram (BDD)s that give compressed representation
of hypotheses for enumeration.

• In this work, we developed an efficient recursive algorithm for
constructing a BDD.

5

Contribution

• An efficient algorithm for enumerating hypotheses using BDDs.

• The class of ILP problems that we can apply our algorithm.

• An efficient algorithm to get the best hypothesis with an
evaluation function.

• We empirically show that our method can be applied to real
data.

6

Binary Decision Diagram and
Enumeration of Solutions

Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a directed acyclic graph that
represents a Boolean function.

0

2

1

10

BDD that represents F (x0, x1, x2) = (x0 ∧ x1) ∨ x2

Binary operations between BDDs can be executed efficiently.
For example, given two BDDs representing logical functions F and

G, then the BDD representingH = F ∧G can be computed in time
linear to F and G sizes.

7

Inductive Logic Programming

In Inductive Logic Programming (ILP), all data, background
knowledge, and hypotheses are represented by first-order logic.

ILP Problem

Input Finite sets E+, E−, and B of ground atoms
Output A set of definite clauses Σ such that

1. for all A ∈ E+ Σ ∪ B |= A

2. for all A ∈ E− Σ ∪ B ̸|= A

Example

E+ = {p(a)}, E− = {p(b)},B = {}

Σ = {p(a)}, {p(x)← q(x), q(a)}, . . .

8

Using BDDs for enumerating ILP solutions

• To enumerate ILP hypotheses with BDDs, we introduce Boolean
variables, because BDD is a representation of a Boolean
function.

• Boolean variables make the hypothesis enumeration problem
equivalent to the problem of identifying a Boolean function.

• Hypothesis spaceH is a finite set of clauses that can be an
element of the hypothesis. We assume thatH is given explicitly.

For each clause C ∈ H, we introduce a propositional variable vC∈Σ

that becomes true if and only if clause C ∈ Σ.
For readability, we represent [C ∈ Σ] instead of vC∈Σ,

C ∈ Σ⇔ [C ∈ Σ] = T . (1)

9

Building a BDD that represents hypotheses

We define FA as a BDD that represents the Boolean function that
becomes true if and only if Σ ∪ B |= A.

Then, a BDD that represents the set of hypotheses is∧
A∈E+

FA ∧
∧

A∈E−
¬FA.

Example
Given:

E+ = {p(a)}, E− = {p(b)},B = {},

The BDD to be built:

Fp(a) ∧ ¬Fp(b) =

0

0 1

4

2
∧

1

1 0

4

3

10

Solving ILP problem on the BDD

IC : the BDD that represents the Boolean variable [C ∈ Σ]

BKA: the BDD that represents a constant that becomes true if and
only if A ∈ B.

Then FA for A ∈ E+ ∪ E− is recursively defined as

FA = BKA ∨
∨

C∈H
∃θ

Cθ=A←B1∧...∧Bn

(
IC ∧

∧
FBi

)
. (2)

The right side of equation (2) represents the fact that Σ ∪ B |= A if

1. A ∈ B, or
2. A is deduced by a substitution.

11

Solving ILP problem on the BDD

Example
Introduced variables:

0⃝[p(a) ∈ Σ], 1⃝[p(b) ∈ Σ],

2⃝[q(a) ∈ Σ], 3⃝[q(b) ∈ Σ], 4⃝[p(x)← q(x) ∈ Σ]

Fp(a) = Ip(a) ∨ (Ip(x)←q(x) ∧ Fq(a))
0

0 1 ∨ (

4

0 1 ∧

2

0 1
)

Fp(b) = Ip(b) ∨ (Ip(x)←q(x) ∧ Fq(b))
1

0 1 ∨ (

4

0 1 ∧

3

0 1
)

12

Solving ILP problem on the BDD

Problem

E+ = {p(a)}, E− = {p(b)},B = {},

H =

{
p(a), p(b),

q(a), q(b), p(x)← q(x)

}
.

Introduced variables:

0⃝[p(a) ∈ Σ] 1⃝[p(b) ∈ Σ]

2⃝[q(a) ∈ Σ] 3⃝[q(b) ∈ Σ]

4⃝[p(x)← q(x) ∈ Σ]

Enumerated hypotheses:

Σ = {p(a)}
Σ = {q(a), p(x)← q(x)}
...

0

1

1

3

4

2

4

3

10

Fp(a) ∧ ¬Fp(b) 13

Applications

Search for the best hypothesis

Introduced variables:

0⃝[p(a) ∈ Σ]

1⃝[p(b) ∈ Σ]

2⃝[q(a) ∈ Σ]

3⃝[q(b) ∈ Σ]

4⃝[p(x)← q(x) ∈ Σ]

Example
The hypothesis with minimum number of
atoms:

Σbest = {p(a)}

This corresponds to the minimum-weight
path colored red.

0

1

1

3

4

2

4

3

10

1

1 1

1

1

2

2

1

Fp(a) ∧ ¬Fp(b)
14

Experiments

Classification of natural numbers

When n is even,

E+ = {e(0), e(s2(0)), . . . , e(sn(0))},

E− = {e(s(0)), e(s3(0)), . . . , e(sn+1(0))}.

When n is odd,

E+ = {e(0), e(s2(0)), . . . , e(sn+1(0))},

E− = {e(s(0)), e(s3(0)), . . . , e(sn(0))}.

Example
In the case of n = 1, E+ , E− , B, andH are, respectively,

E+ = {e(0), e(s2(0))}, E− = {e(s(0))},B = ∅, and

H =



e(0), e(x),

e(s(0)), e(s(x)),

e(s2(0)), e(s2(x)),

e(s(x))← e(x), e(s2(x))← e(x),

e(s2(x))← e(s(x)), e(s2(x))← e(s(x)) ∧ e(x)


.

15

Results

n variables nodes hypotheses
BDD

construction time
best hypothesis
search time

1 10 8 28 7.56msec 0.62msec
2 19 14 192 9.63msec 0.68msec
3 36 27 1.25 × 107 1.90 × 10msec 1.02msec
4 69 42 1.31 × 1013 3.08 × 10msec 1.16msec
5 134 69 4.82 × 1032 7.00 × 10msec 1.48msec
6 263 101 9.77 × 1063 3.50 × 102msec 2.21msec
7 520 156 2.26 × 10141 1.68 × 103msec 1.68msec
8 1033 219 1.80 × 10308+ 1.20 × 104msec 2.66msec

Table 1: The results of the natural number problem

16

Classification of real data

(1) Soybean(small)1 and (2) Shuttle Landing Control2 from
UCI Machine Learning Repository3.
Target concept: D1, no_auto respectively.

Problem variables nodes hypotheses
BDD

construction time
Soybean 2243 788498 1.80× 10308+ 13495msec
Shuttle 117 2345 6.76× 1010 30msec

Table 2: The results of real data problem

One of the best hypotheses found in problem of Soybean(small) is,

Σbest = {class(x,D1)← stem_canker(x, above_soil)}.

1https://archive.ics.uci.edu/ml/datasets/soybean+(small)
2https://archive.ics.uci.edu/ml/datasets/Shuttle+Landing+Control
3http://archive.ics.uci.edu/ml/index.php

17

Conclusion and Future work

Conclusion and Future work

Conclusion

• We proposed a BDD-based method to enumerate hypotheses of
an ILP.

• We showed that users can get the best hypothesis following an
evaluation function from the constructed BDD.

Future Work

• Enumerating hypotheses that have some errors
• Combination with other ILP approaches
• Enumeration with other data structures

18

Requirements

Hypothesis space is a finite set of clauses that can be an element of
the hypothesis.

We assume that the hypothesis space is given explicitly,
and it satisfies the following two requirements.

Requirement 1
The hypothesis space does not contain any mutually recursive
clauses.

Requirement 2
The hypothesis space is variable-bounded.

19

Mutually recursive clauses

Mutually recursive clauses
LetH is a hypothesis space that is finite set of definite clauses. If a
series of definite clauses {Ci ∈ H}i=0,...,n and substitutions
θ1, . . . , θn exist, and they are expressed as

C1θ1 = A← . . . ∧X1 ∧ . . . ,

C2θ2 = X1 ← . . . ∧X2 ∧ . . . ,

...
Cnθn = Xn−1 ← . . . ∧A ∧ . . . ,

then C1, C2, . . . , Cn are mutually recursive clauses.

Having no mutually recursive clauses ensures that we can trace all
literals present in the hypothesis space in a finite number of steps.

20

Variable-bounded

Variable-bounded
Definite clause A← B1 ∧ . . . ∧Bn is variable-bounded if
v(A) ⊇ v(Bi) (i = 1, . . . , n), where v(C) is the set of all
variables in C . The hypothesis spaceH is variable-bounded if all
C ∈ H are variable-bounded.

Being variable-bounded ensures that for a clause
Cθ = A← B1 ∧ . . . ∧Bn ∈ H,
if A has no variables, then Bi (i = 1, . . . , n) also has no variables.

21

	Introduction
	Binary Decision Diagram and Enumeration of Solutions
	Applications
	Experiments
	Conclusion and Future work

